
CI:IRL

Who am I?
• Elizabeth Tucker Long (aka Beth)

• Editor-in-Chief of php|architect magazine

Want to write?
See me after.

• PHP Essentials
Instructor

• Freelance consultant

Audience Participation?

• Yes, there will be. So, when I ask the audience
a question, don’t be shy about answering.

Continuous Integration

That’s only for the big guys.

My team is small, my projects are small.

So, why am I up here?

What is continuous integration?
According to Wikipedia:

In software engineering, continuous integration (CI)
implements continuous processes of applying
quality control — small pieces of effort, applied
frequently. Continuous integration aims to
improve the quality of software, and to reduce
the time taken to deliver it, by replacing the
traditional practice of applying quality control
after completing all development.

http://en.wikipedia.org/wiki/Continuous_integration

• Martin Fowler -
http://martinfowler.com/articles/continuousIn
tegration.html

http://martinfowler.com/articles/continuousIntegration.html�
http://martinfowler.com/articles/continuousIntegration.html�

Continuous Integration is a software
development practice where members of a
team integrate their work frequently, usually
each person integrates at least daily - leading
to multiple integrations per day. Each
integration is verified by an automated build
(including test) to detect integration errors as
quickly as possible. Many teams find that this
approach leads to significantly reduced
integration problems and allows a team to
develop cohesive software more rapidly.

Step 1

Continuous Integration is a software
development practice where members of a
team integrate their work frequently, usually
each person integrates at least daily - leading
to multiple integrations per day.

Step 2

Each integration is verified by an automated
build (including test) to detect integration
errors as quickly as possible.

Code Quality

Why?

• Easier to test

• Easier to measure

• Easier to follow

• Streamlines the development process

Measuring Code Quality

• PEAR coding standard -
http://pear.php.net/manual/en/standards.php

• PEAR2 coding standard -
http://pear.php.net/manual/en/pear2cs.rules.
php

• PHP Standards Working Group -
http://groups.google.com/group/php-
standards

PEAR Coding Standard

• Use an indent of 4 spaces, with no tabs.
• Control Structures:

<?php
if ((condition1) || (condition2)) {

action1;
} elseif ((condition3) && (condition4)) {

action2;
} else {

defaultAction;
}
?>

Custom Standards

• Broad

• Strict, but flexible

• Based on a “standard” standard

• Everyone must follow

PHP_CodeSniffer

"tokenises your PHP, JavaScript and CSS files and
detects violations of a defined set of coding
standards“
http://pear.php.net/package/PHP_CodeSniffer

• PEAR package

• Single file or entire directory

• Preset and customizable

http://pear.php.net/package/PHP_CodeSniffer�

Output

$ phpcs /myDir/myFile.php

FILE: /myDir/myFile.php
--
FOUND 3 ERROR(S) AFFECTING 3 LINE(S)
--
2 | ERROR | Missing file doc comment
20 | ERROR | PHP keywords must be lowercase;

expected "false" but found "FALSE"
47 | ERROR | Line not indented correctly;

expected 4 spaces but found 1
--

Unit Tests

• Unit - the smallest piece of testable code
within my application or script.

• Unit test - a piece of code that executes the
unit and then evaluates the result returned.

Tips

• Make sure the unit is small enough so the test
is testing a single function.

• Make sure the test is efficient enough to run
repeatedly, perhaps even a thousand times a
day.

• Make sure the tests do not depend on each
other. Each test should be able to run
completely separately from other tests.

function validateName($name) {

if ((strlen($name) > 1) && (strlen($name) < 50)) {

if (ctype_alpha(str_replace(array(" ",",","-","'"),"",$name))) {

return true;

}

else {

return false;

}

}

else {

return false;

}

}

assert(validateName("Beth's Test Name"));

How Many Tests?

Enough to test every basic function of the code.

Testing Frameworks

• Standardize test format

• Easily run tests

• Analyze results

PHPUnit - http://www.phpunit.de

Pros:
• Good documentation
• Lots of examples online
• Integrates with many other popular tools and

platforms

Cons:
• Command line only

http://www.phpunit.de/�

SimpleTest - http://www.simpletest.org/

Pros:

• Run on command line or in browser

• Can test front-end functionality

Cons:

• Not as integrated as PHPUnit

http://www.simpletest.org/�

Automate The Build

• Perform a DB query to update the schema,
clear a cache, upload files, run cron tasks, etc.

Phing - http://phing.info

• PHP project build system

• Based on Apache Ant

• XML build files and PHP "task" classes

• Integrates with both PHPUnit and SimpleTest
as well as phpDocumentor

• Platform independent

• No required external dependencies

http://phing.info/�

Maven - http://maven.apache.org

• Supports Ant tasks

• Large library of third-party plug-ins to
integrate other continuous integration tools

• Helps shield you from the details of the build

• For Java-based projects, so you’ll need Maven
for PHP: http://www.php-maven.org/

http://maven.apache.org/�
http://www.php-maven.org/�

Phing Buildfile:

<?xml version="1.0" encoding="UTF-8"?>

<project name="FooBar" default="dist">

<!-- == -->

<!-- Target: prepare -->

<!-- == -->

<target name="prepare">

<echo msg="Making directory ./build" />

<mkdir dir="./build" />

</target>

<!-- == -->

<!-- Target: build -->

<!-- == -->

<target name="build" depends="prepare">

<echo msg="Copying ./about.php to ./build directory..." />

<copy file="./about.php" tofile="./build/about.php" />

</target>

<!-- == -->

<!-- (DEFAULT) Target: dist -->

<!-- == -->

<target name="dist" depends="build">

<echo msg="Creating archive..." />

<tar destfile="./build/build.tar.gz"
compression="gzip">

<fileset dir="./build">

<include name="*" />

</fileset>

</tar>

<echo msg="Files copied and compressed in build
directory OK!" />

</target>

</project>

Documentation

phpDocumentor -
http://pear.php.net/manual/en/package.php.
phpdocumentor.php

• Automates documentation

http://pear.php.net/manual/en/package.php.phpdocumentor.php�
http://pear.php.net/manual/en/package.php.phpdocumentor.php�

/**

* validate a name

*

* This function takes in a name as a parameter

* and will make sure that it is between 2 and

* 49 characters long and that it only contains

* alphabetic characters as well as hyphens,

* spaces, apostrophes and commas.

*/

Continuous Integration Tools

• CruiseControl
– Written in Java
– Binary distribution, a Windows Installer and the

source distribution
– Flexible scheduling system
– Notifications via e-mail, messaging or viewing HTML

reports
– Integrates with Phing and Maven
– PHPUnderControl - optional add-on application for

integrating PHP_CodeSniffer and PHPUnit

Hudson and Jenkins

• Built on Java

• Installed via native packages or a war file

• Easily configured via a GUI web interface

• Extensive library of third-party plug-ins

• RSS, e-mail or instant messaging options for
build notifications

• Template for Jenkins Jobs for PHP Projects
(by Sebastian Bergmann)

Reporting

• Sonar
– Integrates with Hudson and Jenkins

– PHP plug-in to integrate it directly with other PHP-
based tools

– Web-based application

– Overall “health” of project, drill down for details

– Includes TimeMachine

Technical Debt Plugin
Assigns a technical debt value

• The debt ratio - The debt ratio gives a percentage of the
current technical debt of the project versus the total possible
debt for the project.

• The cost to reimburse – A dollar amount for what it would
cost to clean all defects.

• The work to reimburse - The cost expressed in work days.

• The breakdown - A pie chart showing how the debt is
distributed across 6 categories: Duplication, Violations,
Complexity, Coverage, Documentation and Design.

Yes, But…

• Project is small, budget is small…

• Evaluate which tools are worthwhile to your
specific project.

Make It a Deliverable

• Consider including unit tests or code
cost/coverage reports in your deliverables to
your customers as an added value to them
(and you down the road).

Quick Recap

• Coding Standards -> PHP_CodeSniffer

• Unit Tests -> PHPUnit or SimpleTest

• Build -> Phing or Maven

• CI Tools -> CruiseControl, Hudson/Jenkins

• Documentation -> PHP_Documentor

• Reporting -> Sonar

Project:

A customer hires you to create a registration
form for a one-time event. It’s a small
customer with a small budget. It should take a
couple hundred lines of code in a single file,
results will be e-mailed. It will be tested by the
event staff and the marketing department on
the live site as they do not have a test
environment, and it will only be live for two
months.

What they need:

1. If they do not have an in-house standard for
you to follow, write it using one of the main
coding standards, like PEAR.

2. Create unit tests for it.

What they don’t need:

1. In-depth reporting

2. Full automation, including build.

3. Documentation

Project:

A customer hires you for an ongoing project. On
the 15th of every month, they need you to go
in and add a new survey to collect data and
write it to a database. The previous month’s
survey data needs to be backed up and
cleared out of the database when the new
survey goes live.

What they need:
1. If they do not have an in-house standard for

you to follow, write it using one of the main
coding standards, like PEAR.

2. Create unit tests for it and use a testing
framework.

3. Automate the build.

What they don’t need:
1. In-depth reporting (Maybe)
2. Documentation (Maybe)

Project:

A customer hires you to write one part of a very
large application. Other consultants that you
do not have access to will be working on other
parts of the application at the same time.

What they need:

1. All of it

In this situation, see if you can convince them to
get everyone working on a unified
continuous integration platform utilizing a
complete suite of continuous integration
tools from standards to documentation and
fully automated everywhere in between.

Take Away #1

Not everything is beneficial
enough to use in every

situation, so choose the right
tools for your project and

needs.

Take Away #2

The fewer steps I have to
remember to do manually,

the more successful

my project will be.

Resources
• CruiseControl - http://cruisecontrol.sourceforge.net

• Guide to writing your own PHP_CodeSniffer standards (Official) -
http://pear.php.net/manual/en/package.php.php-codesniffer.coding-standard-tutorial.php

• Guide to writing your own PHP_CodeSniffer standards (Alternate) - http://luhman.org/blog/2009/12/17/setting-
custom-coding-standards-php-codesniffer

• Hudson - http://hudson-ci.org

• Jenkins - http://jenkins-ci.org

• Maven - http://www.php-maven.org

• PEAR coding standard - http://pear.php.net/manual/en/standards.php

• PEAR Package Manager Installation - http://pear.php.net/manual/en/installation.php

• PEAR Packages Installation - http://pear.php.net/manual/en/guide.users.commandline.installing.php

• PEAR2 coding standard - http://pear.php.net/manual/en/pear2cs.rules.php

• Phing - http://phing.info

• PHP Standards Working Group - http://groups.google.com/group/php-standards

• PHP_CodeSniffer - http://pear.php.net/package/PHP_CodeSniffer

• phpDocumentor - http://pear.php.net/manual/en/package.php.phpdocumentor.php

• PHPUnit - http://www.phpunit.de/manual/3.6/en/automating-tests.html

• phpUnderControl - http://phpundercontrol.org

• SimpleTest - http://www.simpletest.org

• Sonar - http://www.sonarsource.org

• Sonar PHP Plug-in - http://docs.codehaus.org/display/SONAR/PHP+Plugin

• Sonar Technical Debt Plugin - http://docs.codehaus.org/display/SONAR/Technical+Debt+Plugin

• Template for Jenkins Jobs for PHP Projects by Sebastian Bergmann - http://jenkins-php.org

http://cruisecontrol.sourceforge.net/�
http://pear.php.net/manual/en/package.php.php-codesniffer.coding-standard-tutorial.php�
http://luhman.org/blog/2009/12/17/setting-custom-coding-standards-php-codesniffer�
http://luhman.org/blog/2009/12/17/setting-custom-coding-standards-php-codesniffer�
http://hudson-ci.org/�
http://jenkins-ci.org/�
http://www.php-maven.org/�
http://pear.php.net/manual/en/standards.php�
http://pear.php.net/manual/en/installation.php�
http://pear.php.net/manual/en/guide.users.commandline.installing.php�
http://pear.php.net/manual/en/pear2cs.rules.php�
http://phing.info/�
http://groups.google.com/group/php-standards�
http://pear.php.net/package/PHP_CodeSniffer�
http://pear.php.net/manual/en/package.php.phpdocumentor.php�
http://www.phpunit.de/manual/3.6/en/automating-tests.html�
http://phpundercontrol.org/�
http://www.simpletest.org/�
http://www.sonarsource.org/�
http://docs.codehaus.org/display/SONAR/PHP+Plugin�
http://docs.codehaus.org/display/SONAR/Technical+Debt+Plugin�
http://jenkins-php.org/�

Find Me
• E-mail: Beth@BlueParabola.com
• Twitter: e3betht
• RobotIQ: beth - http://www.robotiq.nl
• Madison PHP User Group (Meetup) -

http://www.madisonphp.com
• Milwaukee PHP User Group (Meetup) –

http://www.mkepug.org
• Slides Available:

http://www.TreelineDesign.com/slides

Ask me about writing articles
for php|architect magazine!

http://www.phparch.com

mailto:Beth@BlueParabola.com�
http://www.robotiq.nl/�
http://www.madisonphp.com/�
http://www.mkepug.org/�
http://www.treelinedesign.com/slides�
http://www.phparch.com/�

	CI:IRL
	Who am I?
	Audience Participation?
	Continuous Integration
	What is continuous integration?
	Slide Number 6
	Slide Number 7
	Step 1
	Step 2
	Code Quality
	Measuring Code Quality
	PEAR Coding Standard
	Custom Standards
	PHP_CodeSniffer
	Output
	Unit Tests
	Tips
	Slide Number 18
	How Many Tests?
	Testing Frameworks
	Slide Number 21
	Slide Number 22
	Automate The Build
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Documentation
	Slide Number 28
	Continuous Integration Tools
	Hudson and Jenkins
	Reporting
	Technical Debt Plugin
	Yes, But…
	Make It a Deliverable
	Quick Recap
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Take Away #1
	Take Away #2
	Resources
	Find Me

